Article 3419

Title of the article

SEASONAL DYNAMICS OF BASKET WILLOW SHOOTS GROWTH (SALIX VIMINALIS) 

Authors

Afonin Aleksey Alekseevich, Doctor of agricultural sciences, professor, sub-department of biology, Ivan Petrovsky Bryansk State University (14, Bezhitskaya street, Bryansk, Russia), E-mail: afonin.salix@gmail.com 

Index UDK

582.623.2 + 57.034 

DOI

10.21685/2307-9150-2019-4-3 

Abstract

Background. Salix viminalis (basket willow) is a highly productive species of willow, which is widely used for cultivation on various plantations. Increasing the efficiency of energy plantations requires intensification of biomass production. Substantiated the need to identify chronobiological patterns of shoots growth of basket willow for the development of measures aimed at improving productivity. Objective: to identify patterns of seasonal dynamics of daily shoots growth of basket willow. Object – a model population of basket willow, created by regular inbreeding in culture.
Materials and methods. Material – growing annual shoots. Methods: breeding, comparative morphological, computer technology analysis.
Results. Analyzed the seasonal dynamics of the daily shoot growth ΔL. Seasonal trends of chronological variability of daily shoots growth are approximated by linear regression equations. Deviations of the actual values of the daily increase from the linear regression dL are cyclical. The series of seasonal dynamics are quasi-harmonic oscillations with a variable period of 15–21 days. Empirical time series dL with high reliability are approximated by sums of harmonics. The contribution of elementary harmonics to the overall seasonal dynamics of deviations of daily growth from linear regression is determined by their amplitude.
Conclusions. The main contribution to the structure of seasonal dynamics of daily growth of shoots is made by high-amplitude lower harmonics with a period of oscillation of 36 and 54 days. Their summation forms a quasi-periodic sequence with a variable oscillation period of 30–40 days. The sum of harmonics with the period of oscillation of 15–22 days has a significant modulating influence on the seasonal dynamics of the daily growth of shoots, forming a quasi-periodic sequence with a variable infradian the period of oscillation 18–20 days. The dynamics of growth of shoots is not related to the individual characteristics of plants. It is recommended to use the revealed regularities as a theoretical basis for intensification of basket willow biomass production. 

Key words

basket willow, Salix viminalis, energy plantations, annual shoots, daily growth, cyclicity of seasonal dynamics, endogenous rhythms 

 

 Download PDF

References

1. Skvortsov A. K. Willows of Russia and adjacent countries: Taxonomical and geographical revision. Joensuu: University of Joensuu, 1999, 307 p.
2. Trybush S., Jahodová Š., Čížková L., Karp A., Hanley S. J. Bioenergy Research. 2012, vol. 5 (4), pp. 969–977.
3. Berlin S., Trybush S. O., Fogelqvist J., Gyllenstrand N., Hallingbäck H. R., Åhman I., Nordh N.-E., Shield I., Powers S. J., Weih M., Lagercrantz U., Rönnberg-Wästljung A.-C., Karp A., Hanley S. J. Tree Genetics & Genomes. 2014, vol. 10 (6), pp. 1595–1610.
DOI 10.1007/s11295-014-0782-5.
4. Tsarev A. P., Pogiba S. P., Trenin V. V. Selektsiya i reproduktsiya lesnykh drevesnykh porod [Forest tree breeding and reproduction]. Moscow: Logos, 2003, 503 p. [In Russian]
5. Kern E. E. Iva, ee znachenie, razvedenie i upotreblenie [Willow, its meaning, breeding and consumption]. Petrograd: Tipografiya Ministerstva putey soobshcheniya (Tovarishchestva I. N. Kushnerev i Ko), 1915, 132 p. [In Russian]
6. Stolarski M. J., Niksa D., Krzyżaniak M., Tworkowski J., Szczukowski S. Renewable and Sustainable Energy Reviews. 2019, vol. 101, pp. 461–475.
7. Karp A., Hanley S. J., Trybush S., Macalpine W., Pei M., Shield I. Journal of integrative plant biology. 2011, vol. 53 (2), pp. 151–165.
8. Hallingbäck H. R., Fogelqvist J., Powers S. J., Turrion-Gomez J., Rossiter R., Amey J., Martin T., Weih M., Gyllenstrand N., Karp A., Lagercrantz U., Hanley S. J., Berlin S., Rönnberg-Wästljung A.-C. Global Change Biology Bioenergy. 2015, vol. 8 (3), pp. 670–685. DOI 10.1111/gcbb.12280.
9. Yang Y., Tilman D., Lehman C., Trost J. J. Nature Sustainability. 2018, vol. 1 (11), pp. 686. DOI 10.1038/s41893-018-0166-1.
10. Fuchilo Ya. D., Sbytna M. V., Zelinskiy B. V. Plant Varieties Studying and Protection. 2018, vol. 14, no. 3, pp. 323–327.
11. Berlin S., Hallingbäck H. R., Beyer F., Nordh N.-E., Weih M., Rönnberg-Wästljung A.-C. Annals of Botany. 2017, vol. 120 (1), pp. 87–100.
12. Krenke N. P. Teoriya tsiklicheskogo stareniya i omolozheniya rasteniy i prakticheskoe ee primenenie [The theory of cyclic aging and rejuvenation of plants and its practical application]. Moscow: Sel'khozgiz, 1940, 135 p. [In Russian]
13. Alvim R., Hewett E. W., Saunders P. F. Plant Physiol. 1976, vol. 57, pp. 474–476.
14. Kuz'micheva N. A. Vestnik farmatsii [Bulletin of Pharmacy]. 2015, no. 3, pp. 40–46. [In Russian]
15. Sozinov O. V., Kuz'micheva N. L. Rastitel'nye resursy [Plant resources]. 2016, vol. 52, no. 4, pp. 610–619. [In Russian]
16. Romanovskiy M. G., Shchekalev R. V. Sistema vida u drevesnykh rasteniy [Species system in woody plants]. Moscow: Tovarishchestvo nauchnykh izdaniy KMK, 2014, 211 p. [In Russian]
17. Afonin A. A. Vestnik Nizhnevartovskogo gosudarstvennogo universiteta [Bulletin of Nizhnevartovsk State University]. 2019, no. 2, pp. 43–50. [In Russian]
18. Afonin A. A., Bulavintseva L. I. Biologiya v shkole [Biology at school]. 2011, no. 5, pp. 3–10. [In Russian]
19. Afonin A. A., Zaytsev S. A. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal [University proceedings. Forest journal]. 2016, no. 3, pp. 66–76. [In Russian] 

 

Дата создания: 22.01.2020 16:09
Дата обновления: 10.02.2020 11:52